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Abstract. The energy diffusion controlled reaction rate of a reacting particle with linear weak damping
and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic
averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized
harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers’ reacting model
with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging
method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin
equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled
reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of
two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are
discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors
can be reduced to the classical ones via linear approximation and high potential barrier approximation.
The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be
well predicted using the stochastic averaging method.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

The development of the reaction rate theory began in the
19th century with the observation of Arrhenius that the
log of reaction rate is proportional to the reciprocal tem-
perature. Modern reaction rate theory is based on the pio-
neering research works performed by Eyring, Kramers and
etc., which are of basic importance for the understanding
of the features of reactions [1–3]. Kramers’ classical reac-
tion theory describes reaction as transiting potential bar-
rier of a particle under action of random force. One crucial
point in the Kramers’ theory on the transition rate is the
white noise assumption about the character of the random
force acting on the particle. In practice, especially under
the effect of nonlinear collision, however, the white noise
assumption may be not satisfied. As the real random force
may have various power spectral densities (PSD), it is sig-
nificant to investigate the transition rates in the case of
colored noises including the harmonic noise and exponen-
tially correlated noise [4–11].

The reaction rate of bistable potential driven by
colored noises has been obtained by dealing with the
Smoluchowski equation [3–7] short of the inertial term.
Although the formula so obtained is simpler, it is valid
only for overdamped cases. The explicit expression of es-
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cape rate in a Morse potential well with memory kernel
friction and exponentially correlated noise was derived by
Carmeli and Nitzan [12]. According to the view that the
escape dynamics is determined by the motion along the
unstable normal mode, Pollak et al. studied the turnover
problem of reacting particles moving in a piecewise con-
tinuous parabolic potential and exponentially decaying
memory [13]. In the case of exponentially correlated noise,
by using analogue computers, Marchesoni et al. have re-
ported that the τ -dependent of transition rate k(τ) is dif-
ferent in the overdamped case (∼exp(−k∞τ)) and under-
damped limit (∼exp(−k0τ

2)) [5]. Other than the case of
overdamped friction and exponentially correlated noise,
there is no exhaustive theory to obtain the reaction rate
in the case of underdamped friction and general broad-
band colored noises.

In this paper, we apply the stochastic averaging
method to study the reaction rate of a reacting particle
driven by broad-band noises and with linear weak damp-
ing. In Section 2, the stochastic averaging method [14,15]
is introduced as well as the concept of generalized har-
monic functions, and the averaged Itô equation govern-
ing the energy diffusion process and the corresponding
Pontryagin equation governing the MFPT are established.
The analytical expression for the transition rate as the
inverse of the MFPT [16] is obtained by solving the
Pontryagin equation in Section 3. As PSD is included in
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the final formula for the transition rate, the analytical re-
sult is valid for all cases of broad-band noises. As two ex-
amples, the results for two special broad-band noises, i.e.,
the harmonic noise and exponentially correlated noise, are
discussed in Section 4. It is shown that the general ex-
pression of reaction rate obtained in this paper can be
reduced to the Kramers’ rate for Gaussian white noise
and Marchesoni’s approximate formula for exponentially
correlated noise through linear approximation and high
potential barrier approximation [5]. The corresponding
Monte Carlo simulation is conducted to verify the the-
oretical results and to determine the applicability range
of the stochastic averaging method.

2 Stochastic averaging method based
reaction rate prediction

For a strongly nonlinear system with single degree of free-
dom and subject to broad-band noises excitation, the gov-
erning equation can be written as

Ẍ + εγ(X, Ẋ)Ẋ + g(X) = ε1/2
m∑

k=1

fk(X, Ẋ)ξk(t) (1)

where g(X) is the strongly nonlinear conservative force,
ε denotes a small parameter, εγ(X, Ẋ) is the coefficient
of quasi-linear weak damping, ε1/2fk(X, Ẋ) are the am-
plitudes of random weak excitations, and ξk(t) are the
stationary broad-band random processes with correlation
function Rkl(τ) = E[ξk(t)ξl(t+ τ)] or PSD Skl(ω).

The conservative Hamiltonian system associated with
system (1) is governed by

ẍ+ g(x) = 0. (2)

The potential U(x) is defined as

U(x) =
∫ x

0

g(u)du. (3)

The functions g(x) and U(x) are assumed to satisfy the
following four conditions:

(i) g(0) = 0;
(ii) There exists a point x0 > 0 such that g(x0) �= 0 and

U(x0) > 0;
(iii) A point x1 < 0 can be found such that g(x1) �= 0 and

U(x1) = U(x0);
(iv) For all x1 < x < x0, U(x) < U(x0).

Under these conditions, the Hamiltonian system (2) has
periodic solution [14]

x(t) = a cosφ(t) + b,

ẋ(t) = −av(a, φ) sinφ(t),
φ(t) = ψ(t) + θ(t) (4)

where a is the amplitude and b is the symmetric cen-
ter coordinate of displacement; v(a, φ) is the instanta-
neous angular frequency; θ(t) is the phase angle differ-
ence. cosφ(t) and sinφ(t) are called generalized harmonic

functions. From equations (3) and (4), one can derive the
following relations:

U(a+ b) = U(−a+ b) (5)

v(a, φ) =
dψ(t)
dt

=

√
2 (U(a+ b) − U(a cosφ+ b))

a2 sin2 φ
(6)

a, b and v(a, φ) can be obtained by solving equations (5)
and (6). It is noted that the instantaneous angular fre-
quency v(a, φ) is a function of a and phase angle φ. Sub-
sequently, a new variable h is introduced to denote db/da.
The explicit expression for h is

h =
db

da
=
g(−a+ b) + g(a+ b)
g(−a+ b) − g(a+ b)

. (7)

The angular frequency v (a, φ) can be expanded into
Fourier series with respect to φ

v(a, φ) =
1
2
v0(a) +

∞∑

n=1

vn(a) cosnφ (8)

where v0(a)/2 is the mean angular frequency

ω̄0(a) =
1
2
v0(a) =

1
2π

∫ 2π

0

v(a, φ)dφ. (9)

Based on this, the following approximate relation will be
used in the stochastic averaging operation:

φ(t) = ω̄0(a)t+ θ(t). (10)

For small ε, the response of quasi Hamiltonian system (1)
is random periodic and of the form

X(t) = A cosΦ(t) +B,

Ẋ(t) = −Av(A,Φ) sinΦ(t),
Φ(t) = Ψ(t) +Θ(t). (11)

By regarding equation (11) as a transformation from X ,
Ẋ to A, Φ, the following equations about amplitude A and
phase angle Φ can be obtained from equation (1) [14]:

dA

dt
= εm1(A,Φ) + ε1/2σ1k(A,Φ)ξk(t),

dΦ

dt
= εm2(A,Φ) + ε1/2σ2k(A,Φ)ξk(t),

k = 1, 2, · · · ,m. (12)

where

m1 = −A2Gγ(A cosΦ+B,−Av sinΦ)v2 sin2 Φ,

m2 = −AGγ(A cosΦ+B,−Av sinΦ)v2(cosΦ+H) sinΦ,
σ1k = −AGfk(A cosΦ+B,−Av sinΦ)v sinΦ,
σ2k = −Gfk(A cosΦ+B,−Av sinΦ)v(cosΦ+H). (13)

in which v = v(A,Φ) and G = 1/ [g(A+B)(1 +H)].
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Based on the Stratonovich-Khasminskii limit theo-
rem [17,18], the amplitude process A(t) in equation (12)
converges weakly to a diffusion process as ε→ 0 in a time
interval T ∝ 0(ε−1). This limiting diffusion process is gov-
erned by the following averaged Itô equation:

dA = m(A)dt + σ(A)dW (t) (14)

where W (t) is unit Wiener process. The drift coefficient
and diffusion coefficient in equation (14) are

m(A) =

〈
m1 +

∫ 0

−∞

(
(∂σ1k/∂A)

∣∣
t
σ1l

∣∣
t+τ

+ (∂σ1k/∂Φ)
∣∣
t
σ2l

∣∣
t+τ

)
Rkl(τ)dτ

〉

t

,

σ2(A) =
〈∫ ∞

−∞

(
σ1k

∣∣
t
σ1l

∣∣
t+τ

)
Rkl(τ)dτ

〉

t

,

k, l = 1, 2, · · · ,m. (15)

where 〈·〉t denotes the time averaging operation, i.e.,

〈·〉t = lim
T→∞

1
T

∫ T

0

(·) dt. (16)

In order to avoid the difficult time averaging, it is replaced
by space averaging with respect to the phase angle Φ. To
obtain the explicit expressions for m(A) and σ2(A), first
expand those terms such as ∂σ1k/∂A, σ1l and etc. into
Fourier series with respect to Φ, integrate with respect to τ
and then average with respect to Φ using the approximate
relations in equation (10).

Note that there is a deterministic relation between the
amplitude A and the total energy E, i.e.,

E = U(A+B) = U(−A+B). (17)

Eliminating B in equation (17) yields deterministic func-
tion E = E(A). The Itô equation governing energy E can
be obtained from the Itô equation (14) by using the Itô
differential rule as following:

dE = m̄(E)dt+ σ̄2(E)dW (t) (18)

where the drift coefficient and diffusion coefficient are

m̄(E) =
{(
dE

dA

)
m(A)+

1
2

(
d2E

dA2

)
σ2(A)

}∣∣∣∣
A=U−1(E)−B

,

σ̄2(E) =

{(
dE

dA

)2

σ2(A)

}∣∣∣∣∣
A=U−1(E)−B

. (19)

Since we are interested in the behavior of transition over
a potential barrier, the Pontryagin equation governing
MFPT is derived from equation (18) as:

m̄(E0)
∂τ

∂E0
+

1
2
σ̄2(E0)

∂2τ

∂E2
0

= −1 (20)

where τ is the MFPT which is a function of initial en-
ergy E0. Here, the first-passage time of energy process

E(t) is defined as the time when energy reaches critical
value EC for the first time given the initial energy E0

(Emin � E0 < EC). The boundary conditions associated
with equation (20) are

τ(E0 = Emin) = finite, τ(E0 = EC) = 0. (21)

Under the boundary conditions in equation (21), the fol-
lowing solution to equation (20) can be obtained:

τ(E0) = 2
∫ EC

E0

du

∫ u

0

1
σ̄2(v)

exp
[
−2

∫ u

v

m̄(w)
σ̄2(w)

dw

]
dv.

(22)
Based on the equivalence of reaction rate and the inverse
of MFPT [16], the energy diffusion controlled transition
rate with initial energy E0 is

kE = 1/µτ(E0). (23)

It should be noted that µ = 1 is valid only in the case of
single metastable potential and in the case of bistable po-
tential with disregarding the backward transition. When
both of the forward and backward transition are consid-
ered, µ for bistable potential is equal to 2 in symmetric
case and is determined by the ratio of phase volumes of
the two states in asymmetric case [3].

3 Reaction rate of a particle excited
by broad-band noise

In this section, the transition rate of a reacting particle
with one-dimensional general potential and broad-band
colored noise excitation is studied by using the stochastic
averaging method introduced in the previous section. The
equation of the system is of the form

Ẍ + εγẊ + g(X) = ε1/2ξ(t) (24)

where g(X) = ω2
0X + βX2 + αX3 and the potential

U(X) = ω2
0X

2/2 + βX3/3 + αX4/4 (25)

satisfy the four conditions (i)–(iv) listed in the last section.
ξ(t) is a broad-band colored noise with PSD S(ω). The
small parameter ε in equation (24) is combined with the
damping coefficient γ and noise ξ(t) so that the damping
force and the random excitation are weak. Several pat-
terns of potentials such as single metastable, symmetric
and asymmetric bistable potentials can be obtained from
equation (25) through varying the parameters ω0, β and α.

Following the procedure described in Section 2, we ob-
tain the following expression for MFPT:

τ(0) = 2
∫ ∆U

0

du

∫ u

0

1
σ̄2(v)

exp
[
−2

∫ u

v

m̄(w)
σ̄2(w)

dw

]
dv

(26)
where initial energy E0 = 0 and potential barrier EC =
∆U . The two coefficients m̄(E) and σ̄2(E) in equation (26)



394 The European Physical Journal B

are evaluated as follows using equation (19):

m(A) =
−γGA2

16

(
8ω2

0 + 16Bβ + 5A2α+ 24B2α

)
+
πGA

8

×
∞∑

i=0

{
(vi − vi+2)

[
d
(
GA(vi − vi+2)

)

dA

+ (i+ 1)(vi + 2Hvi+1 + vi+2)G

]
S

(
(i+ 1)ω̄0

)}
,

σ2(A) =
πG2A2

4

∞∑

i=0

[
(vi − vi+2)2S

(
(i+ 1)ω̄0

)]
(27)

where G, B, H , vi and ω̄0 can be obtained directly or
indirectly by replacing a, b and h in equations (7–9), (13)
with A, B and H , respectively.

The reaction rate is thus achieved using equation (23)
where µ depends on the pattern of the potential and
whether or not the backward transition is considered.

4 Reaction rate in two special broad-band
noise cases

4.1 Harmonic noise

A harmonic noise can be produced from a harmonic oscil-
lator driven by a Gaussian white noise. The PSD of the
harmonic noise is of the form

S(ω) =
D

π (ω2Γ 2 + (ω2 −Ω2)2)
(28)

where Γ and Ω are the damping coefficient and natu-
ral frequency of the harmonic oscillator, respectively; 2D
is the intensity of the input Gaussian white noise. The
Einstein relation D = γkBT is applicable here, where kB

is the Boltzmann constant, T is the temperature of the
thermal environment and γ is the damping coefficient.
The PSD in equation (28) for three Γ values are shown
in Figure 1 using solid line. It is seen that many kinds
of PSD including those for broad-band, flat narrow-band
and narrow-band noises can be produced by adjusting D,
Γ and Ω.

The classical Kramers bistable model is used in the
following to illuminate the prediction of transition rate
using the proposed method. A reacting particle moving
in Kramers bistable potential is shown in Figure 2. The
potential is defined as

U(X) = ε1X
2 −√

ε1ε2X
3 +

ε2
4
X4, ε1, ε2 > 0. (29)

The potential barrier between the two stable equilib-
rium positions is ∆U = ε21/4ε2. The parameters in equa-
tion (25) for this special case are

ω0 =
√

2ε1, β = −3
√
ε1ε2, α = ε2. (30)

Substituting equations (28) and (30) into equa-
tions (27), (19), (26) and (23) in sequence, the transition

0 2 4 6 8 10

ω

0

0.2

0.4

0.6

0.8

1

1.2

S(
ω

)

¡Á10-3

Γ = 3

Γ  = 4

Γ = 5

τ = 0.02

τ = 0.1
τ = 0.5

×10-3

Fig. 1. The PSD of harmonic noise (28) with D = 0.2, Ω = 3
denoted by solid line —— and the PSD of exponentially corre-
lated noise (37) with D = 0.002 denoted by dashed line - - - - -.

Fig. 2. A reacting particle moving in the classical Kramers
bistable potential governed by equation (29) with ε1 = 1,
ε2 = 1.

rate of a reacting particle in Kramers bistable potential
can be evaluated.

It is noted that the general expression for transition
rate in equations (26) and (23) can be reduced to the
classical Kramers rate [2] by the following reasoning: (i) In
the case of linear approximation, i.e., harmonic potential
approximation, the nonlinear parameters β and α vanish
and thus g(X) = ω2

0X
2. The following parameters can be

obtained from equations (5–9)

ω̄0(A) = ω0, B = 0, H = 0, vi(A) = 0, (i = 1, 2, · · · ).
(31)
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Substituting equation (31) into equations (27) and (19),
one can obtain the reduced drift coefficients and diffusion
coefficients

m(A) = −1
2
γA+

π

2ω2
0A

S(ω0), σ2(A) =
π

ω2
0

S(ω0),

m̄(E) = −γE + πS(ω0), σ̄2(E) = 2πES(ω0). (32)

Substituting m̄(E) and σ̄2(E) in equation (32) into equa-
tions (26) and (23), a simplified expression for the transi-
tion rate can be derived as:

kE =

(
1
γ

∫ Z

0

et − 1
t

dt

)−1

, Z =
γ∆U

πS(ω0)
(33)

(ii) If the potential barrier ∆U is sufficiently high, i.e.,
γ∆U/πS(ω0) � 1, considering the following limit

lim
Z→∞

[∫ Z

0

et − 1
t

dt/
1
Z
eZ

]
= 1 (34)

we can obtain a simplified expression for the transition
rate:

kE =
γ2∆U

πS(ω0)
exp

(−γ∆U
πS(ω0)

)
(35)

(iii) Furthermore, in the case of white noise S(ω0) = D/π,
noting the Einstein relationD = γkBT , the transition rate
can be simplified as:

kE =
γ∆U

kBT
exp

(−∆U
kBT

)
(36)

which is the same as that given by Kramers for the case
of weak damping and white noise [2].

Some numerical results obtained by using the proposed
method and from Monte Carlo simulations are shown in
Figure 3, where solid lines represent for analytical results,
•, �, � for the simulation results of energy controlled tran-
sition rate, and ◦, ♦, � for the simulation results of spa-
tial transition rate. The spatial transition rate is the in-
verse of the MFPT for the first-passage of displacement
X(t) >

√
ε1/ε2 (see Fig. 2). It is indicated that in the case

of weak damping the two rates are close to each other and
the analytical results agree well with both of simulation
results. It is shown in Figure 4 that equation (23) is valid
for various shapes of PSD S(ω). However, we can see that
the reaction rate of a particle in bistable potential under
narrow-band random excitation can not be well predicted
by using the proposed method, especially when the PSD
peak is located near the natural frequency of the system.
In such cases, the external resonance should be considered
and the averaged Itô equations will be two-dimensional.

4.2 Exponentially correlated noise

Another important colored noise model often used in the-
oretical analysis and analogical experiment is the expo-
nentially correlated noise [3,5]. This colored noise can be

Fig. 3. The energy diffusion controlled transition rate kE in
equation (26) of system (24) subject to harmonic noise with
PSD (28). Ω = 3, Γ = 10, D is determined by equation (28)
and D = γkBT . —— denotes the analytical results; •, �, �
denote the corresponding simulation results and ◦, ♦, � denote
the spatial transition rate which defined by the random process
X(t) >

√
ε1/ε2 for the first time.

Fig. 4. The energy diffusion controlled transition rate kE in
equation (26) as the function of correlation time τ . Ω = 3,
γ = 0.01. —— denotes the analytical results; •, �, � denote
the corresponding simulation results.

produced from one-dimensional linear system driven by
Gaussian white noise. The correlation function R(t) and
PSD S(ω) of the exponentially correlated noise are

R(t) =
D

τ
exp

(
−|t|
τ

)
, S(ω) =

D

π(τ2ω2 + 1)
(37)
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Fig. 5. The energy diffusion controlled transition rate kE in
equation (26) of system (24) subject to exponentially corre-
lated noise with PSD (37). τ = 0.2. D is determined by equa-
tion (37) and D = γkBT . —— denotes the analytical results; •,
�, � denote the corresponding simulation results and ◦, ♦, �
denote the spatial transition rate which defined by the random
process X(t) >

√
ε1/ε2 for the first time.

where 2D is the intensity of the input Gaussian white
noise; τ is the correlation time. Some PSDs for exponen-
tially correlated noises are shown in Figure 1 using dotted
lines. It is shown that the bandwidth of the noise depends
on τ . As τ → 0, the exponentially correlated noise ap-
proaches white noise.

By using analogue computer to investigate the tran-
sition rate, Marchesoni et al. have reported that the
τ -dependent of transition rate k(τ) is in proportion to
exp(−k0τ

2). In the absence of an exhaustive theory,
Marchesoni et al. tested the plausibility of the simulation
findings and derived the following approximate prediction
for transition rate [5]:

k(τ) = k(0)(1 + ω2
0τ

2) exp
(−∆U
kBT

ω2
0τ

2

)
(38)

where the transition rate k(τ) is regarded as a function
of the correlation time τ and k(0) is exactly the same as
Kramers transition rate kE in equation (36). It is noted
that in the limit τ → 0, equation (38) reduces to the
experimental law k(τ) ∼ exp(−k0τ

2).
Noted that the general expression for transition rate

equations (26) and (23) can also be reduced to equa-
tion (38) under the same conditions. As shown in the last
section, after linear and high potential barrier approxima-
tions, the transition rate is given by equation (35). Sub-
stituting equation (37) into equation (35) yields

kE =
γ∆U

kBT
(1 + ω2

0τ
2) exp

[−∆U
kBT

(1 + ω2
0τ

2)
]

(39)

Fig. 6. The energy diffusion controlled transition rate kE in
equation (26) as the function of correlation time τ . γ = 0.01.
—— denotes the analytical results (26); - - - - - - denotes the
Marchensoni’s results (38); •, �, � denote the corresponding
simulation results.

which is exactly the same as that in equation (38) noting
that k(0) in equation (38) is equal to kE in equation (36).

Some numerical results are shown in Figure 5, where
solid lines represent for analytical results, •, �, � for the
corresponding simulation results of energy diffusion con-
trolled rate, and ◦, ♦, � for the simulation results of
spatial transition rate. With the correlation time τ vary-
ing from 0 to 1.2, the noise with PSD (37) goes through
from white noise to broad-band noise. Figure 6 shows the
comparison of the analytical results obtained from equa-
tion (23), results from equation (38) and the simulation
results as function of correlation time τ . The satisfactory
prediction for transition rate using (23) can be achieved
even when broad-band noise has longer correlation time τ .

5 Conclusions

In the present paper, the stochastic averaging method us-
ing generalized harmonic functions has been applied to the
prediction of the energy diffusion controlled reaction rate
of a reacting particle subject to broad-band colored noise
excitation. In the case of weak damping and weak random
excitation, the amplitudes of displacement and energy of
the reacting particle are slowly varying processes that
converge to one-dimensional diffusion processes. The av-
eraged Itô stochastic differential equations governing the
amplitudes and energy diffusion processes have been es-
tablished. The MFPT of the energy diffusion process has
been obtained by solving the corresponding Pontryagin
equation. Then, the transition rate controlled by energy
diffusion was determined as the inverse of the MFPT.
As an example, the reaction rate of a particle in classi-
cal Kramers bistable potential and driven by a harmonic



M.L. Deng and W.Q. Zhu: Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise 397

noise or an exponentially correlated noise has been stud-
ied in detail. It has been shown that the expression for
the transition rate is quite general and is applicable to
various potentials and broad-band colored noises and that
by taking linear approximation and high potential barrier
approximation the general expression for reaction rate ob-
tained in this paper can be reduced to the Kramers rate
for white noise and Marchesoni’s formula for exponentially
correlated noise. Monte Carlo simulations have been per-
formed to verify the analytical results. It is seen from the
figures that in the linear weak damping case, the proposed
theoretical method yields satisfactory results for the reac-
tion rate. However, in the case of narrow-band noise, the
proposed method fails to yield satisfactory results proba-
bly due to the external resonance.

The work reported in this paper was supported by the National
Natural Science Foundation of China under a key Grant No.
10332030, and by the Fund for Doctoral Programs of Higher
Education of China under Grant No. 20060335125 and the
Postdoctoral Science Foundation of China under Grant No.
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